skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Missula, Meghana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The goal ofprogrammatic Learning from Demonstration (LfD)is to learn a policy in a programming language that can be used to control a robot’s behavior from a set of user demonstrations. This paper presents a new programmatic LfD algorithm that targetslong-horizon robot taskswhich require synthesizing programs with complex control flow structures, including nested loops with multiple conditionals. Our proposed method first learns a program sketch that captures the target program’s control flow and then completes this sketch using an LLM-guided search procedure that incorporates a novel technique for proving unrealizability of programming-by-demonstration problems. We have implemented our approach in a new tool calledprolexand present the results of a comprehensive experimental evaluation on 120 benchmarks involving complex tasks and environments. We show that, given a 120 second time limit,prolexcan find a program consistent with the demonstrations in 80% of the cases. Furthermore, for 81% of the tasks for which a solution is returned,prolexis able to find the ground truth program with just one demonstration. In comparison, CVC5, a syntaxguided synthesis tool, is only able to solve 25% of the caseseven when given the ground truth program sketch, and an LLM-based approach, GPT-Synth, is unable to solve any of the tasks due to the environment complexity. 
    more » « less